Respuesta :
Answer: [tex]\frac{\sqrt{3} }{2}[/tex]
Step-by-step explanation:
To find sin(60), you need to know the unit circle. Sin(60) is the same as sin(π/3). On the unit circle, sin(π/3) is √3/2. We know this because the coordinates are (cos, sin). Sin is the y coordinate.
Answer:
[tex]\huge\boxed{\sin60^o=\dfrac{\sqrt3}{2}}[/tex]
Step-by-step explanation:
Let's take a right triangle with acute angles 30° and 60°.
We know that the ratio of the sides of such a triangle is 2 : 1 : √3
(look at the picture)
We know:
[tex]sine=\dfrac{opposite}{hypotenuse}[/tex]
In this triangle we have:
[tex]opposite=a\sqrt3\\hypotenuse=2a[/tex]
Substitute:
[tex]\sin60^o=\dfrac{a\sqrt3}{2a}[/tex] cancel a
[tex]\sin60^o=\dfrac{\sqrt3}{2}[/tex]
