Answer:
[tex]LS = 63[/tex]
Step-by-step explanation:
Given
[tex]LS = 14x - 21[/tex]
[tex]LH = 15[/tex]
[tex]HS = 8x[/tex]
Required
Determine the length of LS
Since H is between L and S, then
[tex]LS = LH + HS[/tex]
Substitute 14x - 21 for LS, 15 for LH and 8x for HS
[tex]14x - 21 = 15 + 8x[/tex]
Collect Like Terms
[tex]14x - 8x = 21 + 15[/tex]
[tex]6x = 36[/tex]
Divide both sides by 6
[tex]x = 6[/tex]
Substitute 6 for x in [tex]LS = 14x - 21[/tex]
[tex]LS = 14(6) - 21[/tex]
[tex]LS = 84 - 21[/tex]
[tex]LS = 63[/tex]
Hence, the length of LS is 63 units