Respuesta :

Answer/Step-by-step explanation:

To complete the table, given the function,   [tex] f(x) = \frac{1}{3}x^2 [/tex], plug in each value of x to find f(x).

Thus:

x = -6

[tex] f(-6) = \frac{1}{3}(-6)^2 = \frac{1}{3}(36) [/tex]

[tex] f(-6) = 12 [/tex]

[tex] f(-3) = \frac{1}{3}(-3)^2 = \frac{1}{3}(9) [/tex]

[tex] f(-3) = 3 [/tex]

[tex] f(0) = \frac{1}{3}(0)^2 = \frac{1}{3}(0)  [/tex]

[tex] f(0) = 0 [/tex]

[tex] f(3) = \frac{1}{3}(3)^2 = \frac{1}{3}(9) [/tex]

[tex] f(3) = 3 [/tex]

[tex] f(6) = \frac{1}{3}(6)^2 = \frac{1}{3}(36) [/tex]

[tex] f(6) = 12 [/tex]