Respuesta :

Answer:  see proof below

Step-by-step explanation:

Use the following Sum Identities:

cos (A + B) = cosA · cosB - sinA · sinB

sin (A + B) =  sinA · cos B - cosA · sinB

Use the Unit Circle to evaluate the following:

cos 30 = √3/2                            sin 30 = 1/2

cos 45 = √2/2                            sin 45 = √2/2

cos 120 = -1/2                             sin 120 = √3/2

cos 240 = -1/2                             sin 240 = -√3/2                        

cos 315 = √2/2                           sin 315 = -√2/2        

cos 330 = √3/2                          sin 330 = -1/2

Proof LHS → RHS

[tex]\text{LHS:}\qquad \qquad \dfrac{\cos 285+\cos 345}{\sin 435-\sin 375}[/tex]

[tex]\text{Expand:}\qquad \quad \dfrac{\cos (240+45)+\cos (315+30)}{\sin (315+120)-\sin (330+45)}[/tex]

[tex]\text{Sum Identity:}\qquad \dfrac{\cos 240\cdot \cos 45-\sin 240\cdot 45+\cos 315\cdot \cos 30-\sin 315\cdot 30}{\sin 315\cdot \cos 120+\cos315\cdot \sin 120-(\sin330\cdot \cos45+\cos 330\cdot \sin 45) }[/tex]

[tex]\text{Unit Circle:}\quad \dfrac{(\frac{-1}{2}\cdot \frac{\sqrt2}{2})-(\frac{-\sqrt3}{2}\cdot \frac{\sqrt2}{2})+(\frac{\sqrt2}{2}\cdot \frac{\sqrt3}{3})-(\frac{-\sqrt2}{2}\cdot \frac{1}{2})}{(\frac{-\sqrt2}{2}\cdot \frac{-1}{2})+(\frac{\sqrt2}{2}\cdot \frac{\sqrt3}{2)}-(\frac{-1}{2}\cdot \frac{\sqrt2}{2})-(\frac{\sqrt3}{2}\cdot \frac{\sqrt2}{2})}[/tex]

[tex]\text{Simplify:}\qquad \dfrac{-\sqrt2+\sqrt6+\sqrt6+\sqrt2}{\sqrt2+\sqrt6+\sqrt2-\sqrt6}\qquad =\dfrac{2\sqrt6}{2\sqrt2}\qquad =\sqrt3[/tex]

LHS = RHS: [tex]\sqrt3 = \sqrt3\qquad \checkmark[/tex]

Ver imagen tramserran