Respuesta :

f ' ( x ) = 1 ( x + 1 ) 2

 

Explanation:

differentiating from first principles

f ' ( x ) = lim h → 0

 

f ( x + h ) − f ( x ) h

f ' ( x ) = lim h → 0

 x + h x + h + 1 − x x + 1 h

the aim now is to eliminate h from the denominator

f ' ( x ) = lim h =0  

( x + h ) ( x + 1 )− x ( x + h + 1) h ( x + 1 ) ( x + h + 1 )

f ' ( x ) = lim h → 0

 x 2 + h x + x + h − x 2 − h x − x h ( x + 1 ) ( x+h + 1 )

f ' ( x ) = lim h → 0

 

h 1 h 1 ( x + 1 ) ( x + h +1 )

f ' ( x ) = 1 ( x + 1 ) 2