A. Use composition to prove whether or not the functions are inverses of each other. B. Express the domain of the compositions using interval notation.

A Use composition to prove whether or not the functions are inverses of each other B Express the domain of the compositions using interval notation class=

Respuesta :

Answer:

Step-by-step explanation:

A). If a function 'f' is inverse of another function 'g',

Then f[g(x)] = x = g[f(x)]

In this question the given functions are,

f(x) = [tex]\frac{1}{x-3}[/tex] and g(x) = [tex]\frac{3x+1}{x}[/tex]

Then, f[g(x)] = [tex]\frac{1}{\frac{3x+1}{x}-3}[/tex]

                    = [tex]\frac{x}{3x+1-3x}[/tex]

                    = x

Similarly, g[f(x)] = [tex]\frac{(\frac{3}{x-3})+1}{\frac{1}{x-3} }[/tex]

                         = [tex]\frac{3+x-3}{1}[/tex]

                         = x

Therefore, Both the functions are inverse of each other.

B). Domain of the compositions of these functions will be a set of all real numbers, (-∞, ∞)