Solve the problem. A variable x has the possible observations shown below. Possible observations of x: -3 -1 0 1 1 2 4 4 5 Find the z-score corresponding to an observed value of x of 2.

Respuesta :

Answer:

[tex]z = 0.228[/tex]

Step-by-step explanation:

Given

x: -3 -1 0 1 1 2 4 4 5

n = 9

Required

Determine the z-score x = 2

z score is calculated by

[tex]z = \frac{x - Mean}{SD}[/tex]

First, we need to calculate the mean

[tex]Mean = \frac{\sum x}{n}[/tex]

Mean = \frac{-3- 1 + 0 + 1 + 1 + 2 + 4 + 4 +5}{n}

[tex]Mean = \frac{13}{9}[/tex]

[tex]Mean = 1.44[/tex]

Next is to calculate the standard deviation

[tex]SD = \frac{\sum (x_i - Mean)^2}{n}[/tex]

[tex]SD =\sqrt{ \frac{(-3-1.44)^2+(-1-1.44)^2+(0-1.44)^2+(1-1.44)^2+(1-1.44)^2+(2-1.44)^2+(4-1.44)^2+(4-1.44)^2+(5-1.44)^2}{9}[/tex][tex]SD =\sqrt{ \frac{(-4.44)^2+(-2.44)^2+(-1.44)^2+(-0.44)^2+(-0.44)^2+(0.56)^2+(2.56)^2+(2.56)^2+(3.56)^2}{9}[/tex]

[tex]SD =\sqrt{ \frac{19.7136+5.9536+2.0736+0.1936+0.1936+0.3136+6.5536+6.5536+12.6736}{9}[/tex]

[tex]SD =\sqrt{ \frac{54.2224}{9}[/tex]

[tex]SD =\sqrt{6.02471111111}[/tex]

[tex]SD = 2.455[/tex]

Substitute these values in

[tex]z = \frac{x - Mean}{SD}[/tex]

Where x = 2

[tex]z = \frac{2 - 1.44}{2.455}[/tex]

[tex]z = \frac{0.56}{2.455}[/tex]

[tex]z = 0.228[/tex]

Hence, the z score of x = 2 is o.228