Respuesta :
Answer:
the midpoint of the class with the greatest frequency 1500
Step-by-step explanation:
The illustration of the dataset given can be well represented in a table format as shown below.
Class Frequency Relative Frequency
$600 - $800 3 [tex]\mathbf{ \dfrac{3}{120} = 0.025}[/tex]
$800 - $1000 7 [tex]\mathbf{ \dfrac{7}{120} = 0.059}[/tex]
$1000 - $1200 11 [tex]\mathbf{ \dfrac{11}{120} = 0.092}[/tex]
$1200 - $1400 22 [tex]\mathbf{ \dfrac{22}{120} = 0.183}[/tex]
$1400 - $1600 40 [tex]\mathbf{ \dfrac{40}{120} = 0.333}[/tex]
$1600 - $1800 24 [tex]\mathbf{ \dfrac{24}{120} = 0.2}[/tex]
$1800 - $2000 9 [tex]\mathbf{ \dfrac{9}{120} = 0.075}[/tex]
$2000 - $2200 4 [tex]\mathbf{ \dfrac{4}{120} = 0.033}[/tex]
Total 120 1
Therefore, the midpoint of the class with the greatest frequency is between $1400 - $1600 since the frequency 40 happens to be the greatest frequency
The midpoint =[tex]\dfrac{upper \ limit + \ lower \ limit}{2}[/tex]
The midpoint =[tex]\dfrac{1400+1600}{2}[/tex]
= 1500