Find the indefinite integral and check the result by differentiation. (Use C for the constant of integration.)

∫ (x + 8x) dx

Respuesta :

Answer:

[tex]y = \frac{9x^2}{2} + c[/tex]

Step-by-step explanation:

Given

[tex]\int\limits^ _[/tex][tex](x + 8x) dx[/tex]

Required

(a) Integrate

(b) Check using differentiation

To integrate, we make use of the following formula;

if

[tex]\frac{dy}{dx} = \int\limits^{} _{} ax^n[/tex]

then

[tex]y = \frac{ax^{n+1}}{n+1}[/tex]

So; [tex]\int\limits^ _[/tex][tex](x + 8x) dx[/tex] becomes

[tex]y = \frac{x^{1+1}}{1+1} + \frac{8x^{1+1}}{1+1} + c[/tex]

[tex]y = \frac{x^{2}}{2} + \frac{8x^{2}}{2} + c[/tex]

[tex]y = \frac{x^{2}}{2} + 4x^2 + c[/tex]

Take LCM

[tex]y = \frac{x^{2} + 8x^2}{2} + c[/tex]

[tex]y = \frac{9x^2}{2} + c[/tex]

To check using differentiation, we make use of

if [tex]y = ax^n[/tex], then

[tex]\frac{dy}{dx} = nax^{n-1}[/tex]

Using this formula

[tex]y = \frac{9x^2}{2} + c[/tex] becomes

[tex]\frac{dy}{dx} = 2 * \frac{9x^{2-1}}{2}[/tex]

[tex]\frac{dy}{dx} = 2 * \frac{9x}{2}[/tex]

[tex]\frac{dy}{dx} =9x[/tex]

[tex]9x = x + 8x[/tex]

So;

[tex]\frac{dy}{dx} = x + 8x[/tex]