Respuesta :

Answer:

44

Step-by-step explanation:

Given:

[tex] f(x) = 4x^2 - 3 [/tex]

Required:

Average range of change from 3 to 9

SOLUTION:

Step 1:

Find f(3) and f(9):

To find f(3), replace x with 3 in the given function

[tex] f(3) = 4(3)^2 - 3 [/tex]

[tex] f(3) = 4(9) - 3 [/tex]

[tex] f(3) = 36 - 3 [/tex]

[tex] f(3) = 33 [/tex]

To find f(9), replace x with 9 in the given function

[tex] f(9) = 4(9)^2 - 3 [/tex]

[tex] f(9) = 4(81) - 3 [/tex]

[tex] f(9) = 324 - 3 [/tex]

[tex] f(9) = 321 [/tex]

Average rate of change = [tex] \frac{f(b) - f(a)}{b - a} [/tex]

Where,

[tex] a = 3, f(a) = 33 [/tex]

[tex] b = 9, f(b) = 321 [/tex]

Plug in the values into the formula for average rate of change.

[tex] = \frac{321 - 33}{9 - 3} [/tex]

[tex] = \frac{288}{6} [/tex]

[tex] = 44 [/tex]

Average rate of change = 44