Respuesta :

Answer:

The value is [tex]u = < \frac{2\sqrt{2}}{10} , \frac{3\sqrt{2}}{10} , - \frac{\sqrt{2}}{2}>[/tex]

Step-by-step explanation:

From the question we are told that

The vector is a=<-4,-3,5>

Generally the unit vector is [tex]u = ay[/tex]

Here y represent the y-coordinate

So

[tex]u =y <-4,-3,5>[/tex]

=> [tex]u = <-4y,-3y,5y>[/tex]

Generally the resultant of a unit vector is 1

So

[tex]|u| = \sqrt{ (-4y)^2 + (-3y)^2 + (5y)^2} = 1 [/tex]

Hence

[tex]|u| = \sqrt{ 16y^2 + 9y^2 + 25y^2} = 1 [/tex]

Taking the square of both sides

[tex] 16y^2 + 9y^2 + 25y^2 = 1 [/tex]

=> [tex] 50y^2 = 1 [/tex]

=> [tex] y = \pm \frac{1}{\sqrt{50}} [/tex]

=> [tex] y = \pm \frac{1}{5 \sqrt{2}} [/tex]

Rationalizing

=> [tex] y = \pm \frac{\sqrt{2}}{10} [/tex]

Given that the first coordinate is positive

[tex] y = - \frac{\sqrt{2}}{10} [/tex]

Hence the unit vector is

[tex]u = <-4(- \frac{\sqrt{2}}{10}),-3(- \frac{\sqrt{2}}{10}),5(- \frac{\sqrt{2}}{10})>[/tex]

=> [tex]u = < \frac{2\sqrt{2}}{10} , \frac{3\sqrt{2}}{10} , - \frac{\sqrt{2}}{2}>[/tex]