Please help me
If EC bisects BED, find m BED.
A. 128°
B. 130°
C. 134°
D. 136°

Answer:
D. 136°
Step-by-step explanation:
[tex]\because \overrightarrow{EC} \:bisects \: \angle BED. \\
\therefore m\angle BEC = m\angle DEC\\
\therefore (11x+2)\degree = (8x+20)\degree \\
\therefore 11x + 2 = 8x + 20\\
\therefore 11x - 8x = 20-2\\
\therefore 3x = 18\\
\therefore x = \frac{18}{3}\\
\therefore x = 6\\\\
\because m\angle BED= m\angle BEC + m\angle DEC\\
\therefore m\angle BED= (11x+2)\degree + (8x+20)\degree\\
\therefore m\angle BED= (19x+22)\degree \\
\therefore m\angle BED= (19\times 6+22)\degree \\
\therefore m\angle BED= (114+22)\degree \\
\huge \purple {\boxed {\therefore m\angle BED= 136\degree}} \\[/tex]