Respuesta :

Answer:

[tex]Q(x,y) = (\frac{-18}{5},\frac{52}{5})[/tex]

Step-by-step explanation:

Given

[tex]M = (-10,12)[/tex]

[tex]T = (6,8)[/tex]

[tex]Ratio = 2:3[/tex]

Required

Determine the coordinate of Q

The question will be answered using the following line ratio formula

[tex]Q(x,y) = (\frac{mx_2 + nx_1}{m+n},\frac{my_2 + ny_1}{m+n})[/tex]

Where

[tex]m:n = 2:3[/tex]

[tex](x_1,y_1) = (-10,12)[/tex]

[tex](x_2,y_2) = (6,8)[/tex]

[tex]Q(x,y) = (\frac{mx_2 + nx_1}{m+n},\frac{my_2 + ny_1}{m+n})[/tex] becomes

[tex]Q(x,y) = (\frac{2 * 6 + 3 * -10}{2+3},\frac{2 * 8 + 3 * 12}{2+3})[/tex]

[tex]Q(x,y) = (\frac{12 - 30}{5},\frac{16+36}{5})[/tex]

[tex]Q(x,y) = (\frac{-18}{5},\frac{52}{5})[/tex]

Hence,, the coordinates of Q is

[tex]Q(x,y) = (\frac{-18}{5},\frac{52}{5})[/tex]