Respuesta :

Answer:

Function [tex]f(x)=\sqrt{-x}[/tex] has domain [tex](-\infty ,0][/tex]

Function [tex]f(x)=x^2+4[/tex] has range [tex][4 ,\infty )[/tex]

Step-by-step explanation:

Domain of the function [tex]f(x)[/tex] refers to the values of [tex]x[/tex] and the range refers to the values that the function [tex]f(x)[/tex] takes for various values of [tex]x[/tex].

Consider a function [tex]f(x)=\sqrt{-x}[/tex]

As value within the square root is non-negative.

[tex]-x\geq 0\\x\leq 0[/tex]

So, domain is [tex](-\infty ,0][/tex]

Now, consider a function [tex]f(x)=x^2+4[/tex]

Clearly,

[tex]x^2\geq 0\\x^2+4\geq 4\\f(x)\geq 4[/tex]

So,

range of [tex]f(x)[/tex] is [tex][4 ,\infty )[/tex]