Answer:
r(t) = 6 cos ti + 6 sin tj + (36 cos t sin t)k
Step-by-step explanation:
Given that
[tex]x^2 + y^2 = 36\ i.e. 6^2[/tex]
And,
z = xy
Now the general form is
r(t) = x(t) i + y(t) j + z(t) k
Now take
x (t) = 6 cos t
And, y (t) = 6 sin t
So,
[tex]x^2 + y^2 = 6^2 cos^2t + 6^2 sin^2 t\\\\= 6^2 (cos^2t + sin^2t)\\\\=6^2\\\\= 36[/tex]
So,
x (t) = 6cost t
And, y (t) = 6 sin t
this satisfied the
[tex]x^2 + y^2 = 36[/tex]
Now
z = xy
= 6cos t × 6 sin t
= 36 cos t sin t
Therefore,
r(t) = 6 cos ti + 6 sin tj + (36 cos t sin t)k