Every straight line has an equation of the form cx​ + dy​ = e, where not both c and d are 0. Such an equation is said to be a general form of the equation of the line. Find a general form of the given equation. yx

Respuesta :

Answer:

Slope intercept form: y =  - [tex]\frac{c}{d}[/tex]x + [tex]\frac{e}{d}[/tex]

Step-by-step explanation:

Given the general equation;

cx + dy = e

To make y the subject of the formula;

dy = e - cx

Divide through by d, to have;

[tex]\frac{dy}{d}[/tex] = [tex]\frac{e}{d}[/tex] - [tex]\frac{cx}{d}[/tex]

So that,

y =  [tex]\frac{e}{d}[/tex]  - [tex]\frac{c}{d}[/tex]x

y =  - [tex]\frac{c}{d}[/tex]x + [tex]\frac{e}{d}[/tex]

Thus, slope = - [tex]\frac{c}{d}[/tex], and intercept = [tex]\frac{e}{d}[/tex]

Therefore, a general form of the given equation is y =  - [tex]\frac{c}{d}[/tex]x + [tex]\frac{e}{d}[/tex].