for 7 and 8, find the maximum or minimum point of the parabola

Answer: 7) Max: y = 52
8) Min: y = -51
Step-by-step explanation:
The Max/Min is the y-value of the intercept.
First, find the x-value of the vertex using the Axis of Symmetry formula:
x = -b/2a. Then plug the x-value into the equation to find the y-value.
7) y = -2x² - 16x + 20
↓ ↓ ↓
a= -2 b= -16 c=20
[tex]\text{AOS:}\quad x=\dfrac{-b}{2a}\quad =\dfrac{-(-16)}{2(-2)}\quad =\dfrac{16}{-4}\quad =-4[/tex]
Max: y = -2(-4)² - 16(-4) + 20
= -2(16) + 64 + 20
= -32 + 84
= 52
*********************************************************************************************
7) y = x² + 12x - 15
↓ ↓ ↓
a= 1 b= 12 c= -15
[tex]\text{AOS:}\quad x=\dfrac{-b}{2a}\quad =\dfrac{-(12)}{2(1)}\quad =\dfrac{-12}{2}\quad =-6[/tex]
Max: y = (-6)² + 12(-6) - 15
= 36 - 72 - 15
= 36 - 87
= -51