Cynthia Besch wants to buy a rug for a room that is 20 ft wide and 26 ft long. She wants to leave a uniform strip of floor around the rug. She can afford to buy 352 square feet of carpeting. What dimensions should the rug​ have?

Respuesta :

Answer:

16 ft by 22 ft

Step-by-step explanation:

The Area of the carpeting she must have = 352 ft²

To solve for this, we have:

Length × Width = Area of a rectangle

352ft² = Length × Width

352ft² = (20 - x) (26 - x)

352 = 520 - 20x - 26x + x²

352 = 520 - 46x + x²

Collect like terms

x² - 46x + 520 - 352

x² - 46x + 168

We factorise

x² - 4x - 42x + 106

(x² - 4x) -(42x + 106)

x(x - 4) -42(x - 4)

(x - 4)(x - 42)

x - 4 = 0, x = 4

x - 42 = 0, x = 42

We choose the least value for x

Hence, x = 4

Length = 20 - 4 = 16ft

Width = 22- 4= 22ft

The dimensions the rug should have is 16ft by 22 ft, meaning 16ft wide and 22ft long