Solve the following matrix equations: (matrices)
I attached the screenshot. If possible, with explanation how you did it. Thanks in advance!

Solve the following matrix equations matrices I attached the screenshot If possible with explanation how you did it Thanks in advance class=

Respuesta :

Step-by-step explanation:

a)

[tex] 3X + \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix} = \begin{pmatrix} - 1 & 6 \\ 10 & 14 \end{pmatrix} \\ \\ 3X = \begin{pmatrix} - 1 & 6 \\ 10 & 14 \end{pmatrix} - \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix} \\ \\ 3X = \begin{pmatrix} - 1 - 2 & 6 - 3 \\ 10 - 4 & 14 - 5 \end{pmatrix}\\ \\ 3X = \begin{pmatrix} - 3 & 3 \\ 6 & 9\end{pmatrix}\\ \\ X = \frac{1}{3} \begin{pmatrix} - 3 & 3 \\ 6 & 9\end{pmatrix}\\ \\ X = \begin{pmatrix} \frac{ - 3}{3} & \frac{3}{3} \\ \\ \frac{6}{3} & \frac{9}{3} \end{pmatrix}\\ \\ \huge \red{ X} = \purple{ \begin{pmatrix} - 1 &1 \\ 2 & 3 \end{pmatrix}}[/tex]

b)

[tex] 3X + 2I_3=\begin{pmatrix} 5 & 0 & -3 \\6 & 5 & 0\\ 9 & 6 & 5\end{pmatrix} \\\\

3X + 2\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{pmatrix} =\begin{pmatrix} 5 & 0 & - 3\\6 & 5 & 0\\ 9 & 6 & 5 \end{pmatrix} \\\\

3X + \begin{pmatrix} 2 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\end{pmatrix} =\begin{pmatrix} 5 & 0 & - 3\\ 6 & 5 & 0 \\ 9 & 6 & 5 \end{pmatrix} \\\\

3X =\begin{pmatrix} 5 & 0 & -3 \\ 6 & 5 & 0 \\ 9 & 6 & 5 \end{pmatrix} - \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \\\\

3X =\begin{pmatrix} 5-2 & 0-0 & -3-0 \\ 6-0 & 5-2 & 0-0 \\ 9-0 & 6-0 & 5-2 \end{pmatrix} \\\\

3X =\begin{pmatrix} 3 & 0 & - 3 \\ 6 & 3 & 0 \\ 9 & 6 & 3 \end{pmatrix} \\\\

X =\frac{1}{3} \begin{pmatrix} 3 & 0 & - 3 \\ 6 & 3 & 0 \\ 9 & 6 & 3 \end{pmatrix} \\\\

X =\begin{pmatrix} \frac{3}{3} & \frac{0}{3} & \frac{-3}{3} \\\\ \frac{6}{3} & \frac{3}{3} & \frac{0}{3} \\\\ \frac{9}{3} & \frac{6}{3} & \frac{3}{3} \end{pmatrix} \\\\

\huge\purple {X} =\orange{\begin{pmatrix} 1 & 0 & - 1\\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}}\\ [/tex]