Respuesta :

Answer:

[tex]y=5/6\approx0.83[/tex]

Step-by-step explanation:

So we have the equation:

[tex]5(2y+1)=4y+10[/tex]

First, let's distribute the left side of our equation:

[tex]5(2y)+5(1)=4y+10[/tex]

Multiply:

[tex]10y+5=4y+10[/tex]

Now, let's isolate the y-variable. Subtract 4y from both sides:

[tex](10y+5)-4y=(4y+10)-4y[/tex]

The right side cancels. Subtract on the left. So:

[tex]6y+5=10[/tex]

Now, subtract 5 from both sides:

[tex](6y+5)-5=(10)-5[/tex]

The left side cancels. Subtract on the right:

[tex]6y=5[/tex]

Now, divide both sides by 6. So:

[tex]\frac{6y}{6}=\frac{5}{6}[/tex]

The left will cancel. Therefore:

[tex]y=5/6\approx0.83[/tex]

And we're done!

5(2y+1)=4y+10(multiply 5 to 2y and 1)
10y+5=4y+10(subtract 5 from 5 and 10)
10y=4y+5(subtract 4y from 4y and 10y)
6y=5(divide 6 by 6y and 5)
y=0.83