Respuesta :
Answer:
[tex]y=5/6\approx0.83[/tex]
Step-by-step explanation:
So we have the equation:
[tex]5(2y+1)=4y+10[/tex]
First, let's distribute the left side of our equation:
[tex]5(2y)+5(1)=4y+10[/tex]
Multiply:
[tex]10y+5=4y+10[/tex]
Now, let's isolate the y-variable. Subtract 4y from both sides:
[tex](10y+5)-4y=(4y+10)-4y[/tex]
The right side cancels. Subtract on the left. So:
[tex]6y+5=10[/tex]
Now, subtract 5 from both sides:
[tex](6y+5)-5=(10)-5[/tex]
The left side cancels. Subtract on the right:
[tex]6y=5[/tex]
Now, divide both sides by 6. So:
[tex]\frac{6y}{6}=\frac{5}{6}[/tex]
The left will cancel. Therefore:
[tex]y=5/6\approx0.83[/tex]
And we're done!
5(2y+1)=4y+10(multiply 5 to 2y and 1)
10y+5=4y+10(subtract 5 from 5 and 10)
10y=4y+5(subtract 4y from 4y and 10y)
6y=5(divide 6 by 6y and 5)
y=0.83
10y+5=4y+10(subtract 5 from 5 and 10)
10y=4y+5(subtract 4y from 4y and 10y)
6y=5(divide 6 by 6y and 5)
y=0.83