Answer: [tex]p_{2}(t)=(-8t^{2}+3t-5,7t^{2}+10,8t^{2}+6t+12)[/tex]
Step-by-step explanation: Velocity is the first derivative of position function, so:
[tex]p'_{1}(t)=(-16t+3,14t,16t+6)[/tex]
Since in the second scene acceleration is zero, velocity must be constant, which means velocity in the second scene is the same as in the first scene, i.e.,
[tex]p'_{2}(t)=p'_{1}(t)[/tex]
[tex]p'_{2}(t) = (-16t+3,14t,16t+6)[/tex]
To determine position function, integrate it:
[tex]p_{2}(t) = \int\limits {(-16t+3,14t,16t+6)} \, dt[/tex]
[tex]p_{2}(t) = (-8t^{2}+3t+c_{1},7t^{2}+c_{2},8t^{2}+6t+c_{3})[/tex]
Now, the "initial condition" is that
[tex]p_{2}(0)=p_{1}(1)[/tex]
[tex]p_{2}(0) = (c_{1}c_{2},c_{3})[/tex]
[tex]p_{1}(1)=(-8.1^{2}+3.1,7.1^{2}+3,8.1^{2}+6.1-2)[/tex]
[tex](c_{1},c_{2},c_{3})=(-5,10,12)[/tex]
[tex]p_{2}(t)=(-8t^{2}+3t-5,7t^{2}+10,8t^{2}+6t+12)[/tex]
Position function in the second scene is [tex]p_{2}(t)=(-8t^{2}+3t-5,7t^{2}+10,8t^{2}+6t+12)[/tex]