Answer:
The probability of a person is a terrorist is [tex]0.161.[/tex]
Step-by-step explanation:
Let,
[tex]A=[/tex] Your neighbor is a terrorist
[tex]B=[/tex] Your neighbor tested positive
Now we want to find the value of [tex]P(A|B)[/tex] where
[tex]P(A|B)=\frac{P(B|A)P(A)}{P(B|A)P(A)+P(B|A^c)P(A^c)}[/tex]
where [tex]P(A)=\frac 1{100}=1-P(A^c), P(B|A)=0.95,[/tex]
[tex]P(B|A^c)=1-0.95=0.05[/tex]
Therefore, [tex]P(A|B)=\frac{\frac{0.95}{100}}{\frac{0.95}{100}+0.05\times \frac{99}{100}}[/tex]
[tex]=\frac{\frac{0.95}{100}}{\frac{0.95+0.05\times 99}{100}}=\frac{0.95}{0.95+4.95}[/tex]
[tex]=0.161[/tex]
Hence, the probability of a person is a terrorist is [tex]0.161.[/tex]