Answer:
a) $66,949.44
b) $79,232.37
c) $79, 985.46
d) $80,000
Explanation:
a) Value of return received per year = $9,600
Rate of interest = 12%
Period = 16 years
Thus, value of investment today shall be the discounted value of returns at the rate of 12%
= $9,600 [tex]\times (\frac{1}{(1+0.12)^{1} } + \frac{1}{(1+0.12)^{2} } + \frac{1}{(1+0.12)^{3} } + ..................... + \frac{1}{(1+0.12)^{16} })[/tex]
= $9,600 [tex]\times\ 6.9739[/tex]
= $66,949.44
b) Value of return received per year = $9,600
Rate of interest = 12%
Period = 41 years
Thus, value of investment today shall be the discounted value of returns at the rate of 12%
= $9,600 [tex]\times (\frac{1}{(1+0.12)^{1} } + \frac{1}{(1+0.12)^{2} } + \frac{1}{(1+0.12)^{3} } + ..................... + \frac{1}{(1+0.12)^{41} })[/tex]
= $79,232.37
c) Value of return received per year = $9,600
Rate of interest = 12%
Period = 41 years
Thus, value of investment today shall be the discounted value of returns at the rate of 12%
= $9,600 [tex]\times (\frac{1}{(1+0.12)^{1} } + \frac{1}{(1+0.12)^{2} } + \frac{1}{(1+0.12)^{3} } + ..................... + \frac{1}{(1+0.12)^{76} })[/tex]
= $79,985.46
d) Value of return received till infinite period
= [tex]\frac{Amount}{Rate\ of\ interest}\ =\ \frac{9,600}{0.12}\ =\ 80,000[/tex]
= $80,000