Respuesta :
Answer:
Inequality form : - 5 + squareroot13 / 2 < x < - 5- squareroot13 / 2 or x > 2
Step-by-step explanation: Solve the inequality by finding the roots and creating test intervals.
I hope this helps you out! :)
The solution to the inequality is [tex]\rm \left (\dfrac{-5+\sqrt{13} }{2} < x < \dfrac{-5-\sqrt{13} }{2} \right ) \ or \ x > 2[/tex].
The Interval Notation is [tex]\rm \left (\dfrac{-5+\sqrt{13} }{2} , \dfrac{-5-\sqrt{13} }{2} \right ) \cup (2, \infty)[/tex].
What is inequality?
In Mathematics, the relationship between two values that are not equal is defined by inequalities.
The given inequality is;
[tex]\rm x^3 + 3x^2 > 7x + 6[/tex]
The solution to the inequality is determined in the following steps given below.
[tex]\rm x^3 + 3x^2 > 7x + 6\\\\\rm x^3 + 3x^2-7x-6 > 7x + 6-7x-6\\\\ x^3 + 3x^2-7x-6 > 0\\\rm \\ x(x^2+5x+3)-2(x^2+5x+3) > 0\\\\ \rm x^3+5x^2+3x-2x^2-10x-6 > 0\\\\ x(x^2+5x+3)-2(x^2+5x+3) > 0\\\\\rm (x-2)(x^2+5x+3) > 0[/tex]
Now finding the roots of the inequality;
[tex]\rm (x-2)(x^2+5x+3) > 0 \\\\(x-2) \left (\dfrac{-5\pm\sqrt{25-12} }{2} \right )\\\\(x-2)\left (\dfrac{-5+\sqrt{13} }{2} \right )\left (\dfrac{-5-\sqrt{13} }{2} \right )[/tex]
Hence, the solution to the inequality is [tex]\rm \left (\dfrac{-5+\sqrt{13} }{2} < x < \dfrac{-5-\sqrt{13} }{2} \right ) \ or \ x > 2[/tex].
Learn more about inequality here;
brainly.com/question/4459260
#SPJ2
