Respuesta :

Answer:

see below

Step-by-step explanation:

1.

a)

the relation is

[tex]y=5x+28[/tex]

b)

[tex]f(x)=5x+28[/tex]

we can use it because for every value of  x there is just one value, as the definition of function states

c)

[tex]f(22)=?\\\\f(22)=5(22)+28\\\\f(22)=110+28\\\\f(22)=138[/tex]

and

[tex]f(?)=128\\\\5x+28=128\\\\5x=128-28\\\\5x=100\\\\x=20[/tex]

2.

the points are

(-2,2) with

[tex]x_1=-2\\\\y_1=2[/tex]

(1,-3) with

[tex]x_2=1\\\\y_2=-3[/tex]

so the change in y is      [tex]y_2-y_1[/tex]

[tex]-3-(2)=-5[/tex]

and the change in x is   [tex]x_2-x_1[/tex]

[tex]1-(-2)=3[/tex]

so the slope is

[tex]\frac{\:Change\:in\:y}{Change\:in\:x} =\frac{-5}{3} =-\frac{5}{3}[/tex]

and the general formula is

[tex]y=ax+b[/tex]

so with a=-5/3

we plug in point 1

[tex]2=-\frac{5}{3} (-2)+b\\\\2=\frac{10}{3} +b\\\\6=10+3b\\\\6-10=3b\\\\-4=3b\\\\-\frac{4}{3}=b[/tex]so the formula is

[tex]y=-\frac{5}{3}x-\frac{4}{3}[/tex]

expressed as a function is

[tex]f(x)=-\frac{5}{3}x-\frac{4}{3}[/tex]

3.

this is bassically all the work of number 2, so we have

(-2,-5)

[tex]x_1=-2\\\\y_1=-5[/tex]

(4,31)

[tex]x_2=4\\\\y_2=31[/tex]

so the slope will be

the change in y    [tex]y_2-y_1[/tex]

[tex]31-(-5)=36[/tex]

the change in x   [tex]x_2-x_1[/tex]

[tex]4-(-2)=6[/tex]

so the slope will be

[tex]\frac{\Delta\:y}{\Delta\:x}=\frac{36}{6} =6[/tex]                                              (the triangle means change)

so the formula we have

[tex]y=mx+b\\\\y=6x+b[/tex]

we plug some point, let's say 1

[tex]-5=6(-2)+b\\\\-5=-12+b\\\\-5+12=b\\\\7=b[/tex]

so the formula is

[tex]y=6x+7[/tex]

as a function is

[tex]f(x)=6x+7[/tex]

so there you have it

Just as a note, for the next one, put more points :)