Answer:
[tex]d=13[/tex]
Step-by-step explanation:
Distance Formula: [tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Simply plug in your 2 coordinates into the distance formula to find distance d:
[tex]d=\sqrt{(5-(-7))^2+(2-(-3))^2}[/tex]
[tex]d=\sqrt{(5+7)^2+(2+3)^2}[/tex]
[tex]d=\sqrt{(12)^2+(5)^2}[/tex]
[tex]d=\sqrt{144+25}[/tex]
[tex]d=\sqrt{169}[/tex]
[tex]d=13[/tex]