Respuesta :

Center of circle is ( 1, 0).

Slope of normal passing though ( 1, 0 ) and ( 2, -5 ) is :

[tex]m_p=\dfrac{0-(-5)}{1-2}\\\\m_p=-5[/tex]

So, slope of tangent will be :

[tex]m_t=-\dfrac{1}{m_n}\\\\m_t=\dfrac{1}{5}[/tex]

Equation of tangent :

[tex]y-(-5)=\dfrac{1}{5}(x-2)\\\\5y+25=x-2\\\\5y-x+27=0[/tex]

Hence, this is the required solution.