The table above gives selected values of twice-differentiable functions f and g, as well as the first two derivatives of g. If f′ (x)=3 for all values of x, what is the value of [tex]\begin{equation}\int_{2}^{4} f(x) g^{\prime \prime}(x) d x\end{equation}[/tex]

The table above gives selected values of twicedifferentiable functions f and g as well as the first two derivatives of g If f x3 for all values of x what is the class=

Respuesta :

Answer:

63

Step-by-step explanation:

∫₂⁴ f(x) g"(x) dx

Integrate by parts.

If u = f(x), then du = f'(x) dx.

If dv = g"(x) dx, then v = g'(x).

∫ u dv = uv − ∫ v du

= f(x) g'(x) − ∫ g'(x) f'(x) dx

f'(x) is constant at 3, so:

= f(x) g'(x) − ∫ 3 g'(x) dx

= f(x) g'(x) − 3 g(x)

Evaluate from x=2 to x=4.

[f(4) g'(4) − 3 g(4)] − [f(2) g'(2) − 3 g(2)]

[(13) (7) − 3 (9)] − [(7) (1) − 3 (2)]

64 − 1

63

The required value of [tex]\int\limits^4_2 {f(x)g"(x)} \, dx (1)[/tex] is 63.

Given that,

The table above gives selected values of twice-differentiable functions f and g,

The first two derivatives of g. If f′ (x) = 3 for all values of x.

We have to determine,

What is the value of [tex]\int\limits^4_2 {f(x)g"(x)} \, dx (1)[/tex].

According to the question,

To obtain the value of given function, integrating the function,

[tex]= \int\limits^4_2 {f(x)g"(x)} \, dx (1)[/tex]

Integrating by using by-parts.

[tex]= \int\limits^4_2 {f(x)g"(x)} \, dx (1)\\\\if\ u = f(x), \ then \ du = f'(x)dx\\\\if \ dv = g"(x)dx, \ then \ v = g'(x)\\\\[/tex]

Then,

[tex]\int u\ dv = uv\ - \ \int v \ du\\\\= f(x) \ g'(x) - \int g'(x) f'(x) \ dx\\[/tex]

if f'(x) is constant at 3,

Then,

[tex]= f(x) g'(x) - \int g'(x)\dx\\\\= f(x) g'(x) -3g(x)[/tex]

Substitute from x = 2 to x = 4 then evaluate,

[tex]= [f(4)\ g'(4) - 3 \ g (4)]- [f(2)\ g'(2) - 3 \ g (2)]\\\\= [(13).(7) - 3.(9)] - [7.(1)- 3.(2)]\\\\= [91-27} - {7-6}\\\\= 64-1\\\\= 63[/tex]

Hence, The required value of [tex]\int\limits^4_2 {f(x)g"(x)} \, dx (1)[/tex] is 63.

To know more about Integration click the link given below.

https://brainly.com/question/14716088