Respuesta :

Answer:

D. [tex]\pi<x<2\pi[/tex]

Step-by-step explanation:

Given the function

[tex]y=cosx[/tex]

Kindly refer to the graph attached in the answer area.

Referring to the intervals [0, [tex]2\pi[/tex]].

It decreases from the interval [0, [tex]\pi[/tex]] and then starts increasing in the interval

[tex][\pi,2\pi][/tex].

Proving by taking derivative:

Taking derivative of the function, [tex]y=cosx[/tex]

[tex]\dfrac{dy}{dx}=-sinx[/tex]

In the interval [tex][\pi,2\pi][/tex], [tex]sinx[/tex] is negative i.e. [tex]sinx<0[/tex].

Therefore [tex]-sinx>0[/tex]

When, the derivative of a function is positive, then the function is strictly increasing.

So, the answer is:

D. [tex]\pi<x<2\pi[/tex]

Ver imagen isyllus