Respuesta :
[tex]f(x) = 6x+2[/tex]
A.
To evaluate f(8), we substitute x with 8 in our expression.
[tex]f(8) = 6*8 + 2\\f(8) = 48 +2\\f(8) = 50[/tex]
Answer: f(8) = 50
B.
To evaluate f(x+6), we do the same but substitute x with x+6 instead.
[tex]f(x+6) = 6(x+6) + 2[/tex]
Expand the parenthesis by multiplying 6 with x and 6.
[tex]f(x+6) = 6x + 6*6 + 2\\f(x+6) = 6x+36+2\\f(x+6) = 6x+38[/tex]
Answer: f(x+6) = 6x + 38
C.
Again, we're doing the same thing, just substituting x with -x.
[tex]f(-x) = 6 * (-x) + 2\\ f(-x)=-6x+2[/tex]
Answer: f(-x) = -6x+2
Answer:
_____________________________________________
[tex] \longmapsto \: f(x) = 6x + 2[/tex]
_____________________________________________
A. [tex]f(8) = 6(8) + 2 = 48 + 2 = \boxed{ 50}✓[/tex]
_____________________________________________
B. [tex]f(x + 6) = 6(x + 6) + 2 \\ = 6x + 36 + 2 \\ = \boxed{ 6x + 38}✓[/tex]
_____________________________________________
C. [tex]f( - x) = 6( - x) + 2 = \boxed{ - 6x + 2}✓[/tex]
_____________________________________________