Respuesta :

Answer:

[tex]\theta =2n\pi, \;\frac{\pi}2+2n\pi \;\;\text{for all}\; n=0,1,2,...[/tex]

Step-by-step explanation:

[tex]\frac 1{\text{cosec} \theta}+\cot \theta-\frac 1{\sin \theta}=\frac 1{\sin \theta}-\frac 1{\text{cosec} \theta}-\cot \theta[/tex]

[tex]\Rightarrow \frac 2{\text{cosec} \theta}+2\cot \theta-\frac 2{\sin \theta}=0[/tex]

[tex]\Rightarrow \frac 1{\text{cosec} \theta}+\cot \theta-\frac 1{\sin \theta}=0[/tex]

[tex]\Rightarrow \sin \theta -\frac 1{\sin \theta}+\frac{\cos \theta}{\sin \theta}=0[/tex]

[tex]\Rightarrow \frac{\sin ^2\theta-1+\cos \theta}{\sin \theta}=0[/tex]

[tex]\Rightarrow \frac{-\cos ^2\theta+\cos \theta}{\sin \theta}=0\Rightarrow\frac{\cos \theta-\cos ^2\theta}{\sin \theta}=0[/tex]

[tex]\Rightarrow \cot \theta(1-\cos \theta)=0[/tex]

[tex]\text{If} \;\;1-\cos \theta=0\Rightarrow \cos \theta=1[/tex]

[tex]\Rightarrow \theta=2n\pi\;\; \text{for all}\; n=0,1,2,.....[/tex]

[tex]\text{If} \cot \theta=0\Rightarrow \frac{\cos \theta}{\sin \theta}=0\Rightarrow \cos \theta=0[/tex]

[tex]\Righarrow \theta =\frac{\pi}2+2n\pi\;\;\text{for all}\; n=0,1,2,...[/tex]

Hence, [tex]\theta =2n\pi, \;\frac{\pi}2+2n\pi \;\;\text{for all}\; n=0,1,2,...[/tex]