Respuesta :

when given two points, you can find the slope of the line that passes through those points by using the slope formula

[tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1}}[/tex]

7. A(1,3), B(4,7)

[tex](x_{1},y_{1}) = (1,3)[/tex]

[tex](x_{2},y_{2}) = (4,7)[/tex]

(the ordered pair you choose to use for x1,y1 could be the other ordered pair, it doesn't really matter)

[tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1}}[/tex]

plug in

[tex]slope = \frac{(7)-(3)}{(4)-(1)}=\frac{4}{3}[/tex]

8. C(3,5), D(-2,6)

[tex](x_{1},y_{1}) = (3,5)[/tex]

[tex](x_{2},y_{2}) = (-2,6)[/tex]

plug in

[tex]slope = \frac{y_{2}-y_{1} }{x_{2}-x_{1}} =\frac{(6)-(5)}{(-2)-(3)}=\frac{1}{-5}=\frac{-1}{5}[/tex]

9. E(-4,0), F(5,5)

[tex](x_{1},y_{1}) = (-4,0)[/tex]

[tex](x_{2},y_{2}) = (5,5)[/tex]

plug in

[tex]slope = \frac{y_{1}-y_{1} }{x_{2}-x_{1}} =\frac{(5)-(0)}{(5)-(-4)}=\frac{5}{9}[/tex]

10. K(-4,4), L(-5,4)

[tex](x_{1},y_{1}) = (-4,4)[/tex]

[tex](x_{2},y_{2}) = (-5,4)[/tex]

plug in

[tex]slope = \frac{y_{1}-y_{1} }{x_{2}-x_{1}} =\frac{(4)-(4)}{(-5)-(-4)}=\frac{0}{-5+4}=\frac{0}{-1}=0[/tex]