Respuesta :

Answer: 43) y = -x² - 2x + 3

              44) y = (1/2)x² + 2x + 3

Step-by-step explanation:

43) Since the x-intercepts and another point are given, use the Intercept form:

          y = a(x - p)(x - q) where

  • p and q are the x-intercepts
  • "a" is the vertical stretch
  • (x, y) is another point on the curve

Given: p = -3,    q = 1     (x, y) = (-1, 4)

y = a(x - p)(x - q)

y = a(x + 3)(x - 1)

4 = a(-1 + 3)(-1 - 1)

4 = a(2)(-2)

4 = -4a

-1 = a

Equation: y = -1(x + 3)(x - 1)

Expand:   y = -(x² - x + 3x - 3)

                   = -(x² + 2x - 3)

                   = -x² - 2x + 3

***********************************************************************************

Since the vertex and another point are given, use the Vertex form:

              y = a(x - h)² + k   where

  • (h, k) is the vertex
  • "a" is the vertical stretch
  • (x, y) is another point on the curve

Given: (h, k) = (-2, 1)  and   (x, y) = (0, 3)

y = a(x - h)² + k

y = a(x + 2)² + 1

3 = a(0 + 2)² + 1

3 = 4a + 1

2 = 4a

1/2 = a

Equation: y = (1/2)(x + 2)² + 1

Expand:   y = (1/2)(x² + 4x + 4) + 1

                  = (1/2)x² + 2x + 2 + 1

                 =  (1/2)x² + 2x + 3