Respuesta :

Answer:

(0, -[tex]\frac{32}{13}[/tex])

Step-by-step explanation:

If a point (x, y) that divides a line segment having extreme ends [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] into the ratio of m : n,

x = [tex]\frac{mx_2+nx_1}{m+n}[/tex]

and y = [tex]\frac{my_2+ny_1}{m+n}[/tex]

From the picture attached,

Extreme ends of a segment are A(-3, -5) and B(10, 6).

Let a point (x, y) divides this segment divides this segment in the ratio of 3 : 10,

x = [tex]\frac{3\times 10+10\times (-3)}{3+10}[/tex]

  = 0

y = [tex]\frac{3(6)+10(-5)}{3+10}[/tex]

  = [tex]\frac{18-50}{13}[/tex]

  = [tex]-\frac{32}{13}[/tex]

Therefore, [tex](0,-\frac{32}{13})[/tex] is a point which divides AB in the ratio of 3 : 10.