Answer:
0.318
Step-by-step explanation:
[tex] \frac{1}{ \sqrt{3} + \sqrt{2} } \\ \\ = \frac{1}{ (\sqrt{3} + \sqrt{2} ) } \times \frac{( \sqrt{3} - \sqrt{2}) }{(\sqrt{3} - \sqrt{2} )} \\ \\ = \frac{1 \times ( \sqrt{3} - \sqrt{2}) }{(\sqrt{3}) ^{2} - (\sqrt{2} )^{2} } \\ \\ = \frac{ \sqrt{3} - \sqrt{2}}{3 - 2} \\ \\ = \frac{ \sqrt{3} - \sqrt{2}}{1} \\ \\ = \sqrt{3} - \sqrt{2} \\ \\ = 1.732 - 1.414 \\ \\ \huge \red{ \boxed{ \frac{1}{ \sqrt{3} + \sqrt{2} } = 0.318}}[/tex]