Answer:
All values for z are true.
Step-by-step explanation:
[tex]2z + 6 < 2(z + 7)[/tex]
Expand:
[tex]2z+6<2z+2\times 7[/tex]
[tex]2z+6<2z+14[/tex]
Subtract 6 from both sides:
[tex]2z+6-6<2z+14-6[/tex]
[tex]2z<2z+8[/tex]
Subtract 2z from both sides:
[tex]2z-2z<2z+8-2z[/tex]
[tex]0<8[/tex]
Thus, all solutions for z are valid as 0 < 8 is true, and the value of z does not affect this end result of "0 < 8".