the area of a rectangular wall of barn is 160 square feet. its length is 4 feet longer than twice its width. find the width of the wall of the barn

Respuesta :

The solution for finding the width of the wall of the barn is as follows:

W + 4 equals length. 

Multiply width time length to equal 160. 

W(w+4) = 160

w(squared) + 4w equals 160. 

W = 10.80 ft

Therefore, the width of the wall of the barn is 10.80 ft

I hope that helps you.
aachen

Answer:

8 feet

Step-by-step explanation:

Given: the area of a rectangular wall of barn is 160 square feet. its length is 4 feet longer than twice its width.

To Find:  the width of the wall of the barn

Solution:

Area of rectangular wall of barn [tex]=160[/tex] [tex]\text{sq.feet}[/tex]

Let the length of wall of barn is [tex]=\text{l}[/tex]

Let the width of wall of barn is [tex]=\text{b}[/tex]

now,

length of wall of barn is, [tex]\text{l}=2\text{b}+4[/tex]

Area of wall of barn [tex]=\text{length}\times\text{width}[/tex]

                                 [tex]=\text{l}\times\text{b}[/tex]

                                 [tex](2\text{b}+4)\text{b}[/tex]

           [tex](2\text{b}+4)\text{b}=160[/tex]

           [tex]2\text{b}^2+4\text{b}=160[/tex]

           [tex]\text{b}^2+2\text{b}=80[/tex]

           [tex]\text{b}^2+2\text{b}-80=0[/tex]

on factorizing

            [tex](\text{b}+10)(\text{b}-8)=0[/tex]

 as width cannot be less than zero,

            [tex]\text{b}=8[/tex] [tex]\text{feet}[/tex]

Width of the wall of barn is   [tex]8[/tex] [tex]\text{feet}[/tex]