Respuesta :

This is the correct answer people I just took the lesson. -4^-4

Answer:

Option A is correct.

[tex]-4^{-4}[/tex]

Step-by-step explanation:

Using exponent rule:

[tex](a^{-n})^m =(\frac{1}{a^n})^m = \frac{1}{a^{nm}}[/tex]

Option A:

[tex]-4^{-4}[/tex]

[tex]-(4^{-1})^4 = -(\frac{1}{4})^4 = -\frac{1}{4^4} = -\frac{1}{256}[/tex]

Option B:

[tex](-4)^{-4}[/tex]

[tex](-4)^{-4} = ((-4)^{-1})^{4} = (\frac{1}{-4})^4 = \frac{1}{(-4)^4} = \frac{1}{256}[/tex]

Option C :

[tex]4^{-4}[/tex]

[tex]4^{-4} = (4^{-1})^4 = (\frac{1}{4})^4 = \frac{1}{4^4} = \frac{1}{256}[/tex]

Option D:

[tex](\frac{1}{4})^{-4}[/tex]

[tex](\frac{1}{4})^{-4} = (4^{-1})^{-4}=4^{4} = 256[/tex]

Therefore, the following simplifies to a negative number is, [tex]-4^{-4}[/tex]