Respuesta :
(1/2) / (1 + 2/3) = (4) / (B ) simplify
(1/2) / ( 5/3) = 4 /(B) cross-multiply
B(1/2) = (5/3)(4)
B(1/2) = 20/3 multiply both sides by 2
B = 40/3 cups of B = 13 + 1/3 cups of B
Cups of ingredient b needed [tex]=13\frac{1}{3}[/tex]
Step-by-step explanation:
A recipe calls for 1/2 cup ingredient a for every 1 2/3 cups of ingredient b.
[tex]\texttt{Ratio of ingredient a : Ratio of ingredient b = }\frac{1}{2}:1\frac{2}{3}\\\\\texttt{Ratio of ingredient a : Ratio of ingredient b = }\frac{1}{2}:\frac{1\times 3+2}{3}\\\\\texttt{Ratio of ingredient a : Ratio of ingredient b = }\frac{1}{2}:\frac{5}{3}[/tex]
Let us assume ingredient of b needed is b.
We have
[tex]4:b= \frac{1}{2}:\frac{5}{3}\\\\\frac{4}{b}=\frac{\frac{1}{2}}{\frac{5}{3}}\\\\\frac{4}{b}=\frac{3}{10}\\\\b=\frac{40}{3}=\frac{39+1}{3}=13\frac{1}{3}[/tex]
Cups of ingredient b needed [tex]=13\frac{1}{3}[/tex]