Respuesta :
mean = (1/n)∑(i=1 to n)xi
= (1/6){92 + 97 + 53 + 90 + 95 + 98}
= 87.5
variance = [(1/n)*∑(i=1 to n)(xi-m)^2] m denotes mean
= (1/6){(92-87.5)^2 + (97-87.5)^2 + (53-87.5)^2 + (90-87.5)^2 + (95-87.5)^2 + (98-87.5)^2}
= 245.6
standard deviation = √[1/(n-1)*∑(i=1 to n)(x-x)^2]
= √{1/6*[(92-87.5)^2 + (97-87.5)^2 + (53-87.5)^2 + (90-87.5)^2 + (95-87.5)^2 + (98-87.5)^2]}
= 15.7
so we got
mean = 87.5
variance = 245.6
standard deviation = 15.7
hope this helps
= (1/6){92 + 97 + 53 + 90 + 95 + 98}
= 87.5
variance = [(1/n)*∑(i=1 to n)(xi-m)^2] m denotes mean
= (1/6){(92-87.5)^2 + (97-87.5)^2 + (53-87.5)^2 + (90-87.5)^2 + (95-87.5)^2 + (98-87.5)^2}
= 245.6
standard deviation = √[1/(n-1)*∑(i=1 to n)(x-x)^2]
= √{1/6*[(92-87.5)^2 + (97-87.5)^2 + (53-87.5)^2 + (90-87.5)^2 + (95-87.5)^2 + (98-87.5)^2]}
= 15.7
so we got
mean = 87.5
variance = 245.6
standard deviation = 15.7
hope this helps
Answer: Hihiiiii, for future visitors the answers to the rest of the quick check are..
1: B: mean=87.5 variance=245.6 standard deviation=15.7
2: A: mean=47.6 variance=31 standard deviation=5.6
3: D: 2
4: B: 2
Hope this helpsss!! If anyone could give brainliest that'd be cool even though im late lol :p