Respuesta :
[tex]f(x) = 2 {x}^{2} + 2x - 24 [/tex]
[tex]f(x) = 2( {x}^{2} + x - 12) [/tex]
[tex]0 = 2( {x}^{2} + x - 12)[/tex]
Divided sides by 2
[tex] {x}^{2} + x - 12 = 0 [/tex]
[tex](x + 4)(x - 3) = 0[/tex]
_________________________________
[tex]x + 4 = 0[/tex]
[tex]x = - 4[/tex]
_________________________________
[tex]x - 3 = 0[/tex]
[tex]x = 3[/tex]
Thus the actual roots are -4 and 3.....
And we're done.
♥️♥️♥️♥️♥️
Answer:
x= 3, -4
Step-by-step explanation:
Set 2 x ² + 2 x − 24 equal to 0 .
2 x ² + 2 x − 24 = 0
Solve for x .
Factor the left side of the equation.
2 ( x² + x − 12 ) = 0
Factor
x ² + x − 12 using the AC method.
2 ( x − 3 ) ( x + 4 ) = 0
If any individual factor on the left side of the equation is equal to 0 , the entire expression will be equal to 0 .
x − 3 = 0
x + 4 = 0
Add 3 and subtract 4 to both sides of the equation.
x = 3
x = -4