Respuesta :

[tex]f(x) = 2 {x}^{2} + 2x - 24 [/tex]

[tex]f(x) = 2( {x}^{2} + x - 12) [/tex]

[tex]0 = 2( {x}^{2} + x - 12)[/tex]

Divided sides by 2

[tex] {x}^{2} + x - 12 = 0 [/tex]

[tex](x + 4)(x - 3) = 0[/tex]

_________________________________

[tex]x + 4 = 0[/tex]

[tex]x = - 4[/tex]

_________________________________

[tex]x - 3 = 0[/tex]

[tex]x = 3[/tex]

Thus the actual roots are -4 and 3.....

And we're done.

♥️♥️♥️♥️♥️

Answer:

x= 3, -4

Step-by-step explanation:

Set  2 x ² +  2 x  −  24  equal to  0 .

   2 x   ² +  2 x  −  24  =  0

Solve for  x .

Factor the left side of the equation.

2 ( x²   +  x  −  12 )  =  0

Factor  

x  ² +  x  − 12  using the AC method.

2 ( x  −  3 ) ( x  +  4 )  =  0

If any individual factor on the left side of the equation is equal to  0 , the entire expression will be equal to  0 .

x − 3 = 0

x + 4 = 0

Add  3  and subtract 4 to both sides of the equation.

x = 3

x = -4