Answer:
[tex]y = \frac{1}{3}x +2[/tex]
Step-by-step explanation:
Given
Equation:
[tex]y = \frac{1}{3}x + 4[/tex]
[tex]Point: (-3,1)[/tex]
Required
Determine the equation of the point parallel to the given equation
First, we need to determine the slope of: [tex]y = \frac{1}{3}x + 4[/tex] using
[tex]y = mx + b[/tex]
Where m represents slope.
By comparison
[tex]m = \frac{1}{3}[/tex]
The equation of the point is calculated as thus:
[tex]y - y_1 = m(x - x_1)[/tex]
Where [tex](x_1,y_1) = (-3,1)[/tex]
So, we have:
[tex]y - y_1 = m(x - x_1)[/tex]
[tex]y - 1 = \frac{1}{3}(x - (-3))[/tex]
[tex]y - 1 = \frac{1}{3}(x +3)[/tex]
[tex]y - 1 = \frac{1}{3}x +1[/tex]
Solve for y
[tex]y = \frac{1}{3}x +1 +1[/tex]
[tex]y = \frac{1}{3}x +2[/tex]