Respuesta :
Answer:
Ag⁺ (aq) + I¯ (aq) —> AgI (s)
Explanation:
We'll begin by writing the dissociation equation for aqueous AgNO₃ and KI.
Aqueous AgNO₃ and KI will dissociate in solution as follow:
AgNO₃ (aq) —> Ag⁺(aq) + NO₃¯ (aq)
KI (aq) —> K⁺(aq) + I¯(aq)
Aqueous AgNO₃ and KI will react as follow:
AgNO₃ (aq) + KI (aq) —>
Ag⁺(aq) + NO₃¯ (aq) + K⁺ (aq) + I¯(aq) —> AgI (s) + K⁺ (aq) + NO₃¯ (aq)
Cancel out the spectator ions (i.e ions that appears on both sides of the equation) to obtain the net ionic equation. The spectator ions are K⁺ and NO₃¯.
Thus, the net ionic equation is:
Ag⁺ (aq) + I¯ (aq) —> AgI (s)
The net ionic equation of aqueous solutions of [tex]AgNO_3[/tex] and [tex]KI[/tex] to form [tex]AgI[/tex] precipitates is: B. [tex]Ag^{+}_{(aq)} + I^{-}_{(aq)}[/tex] -----> [tex]AgI_{(s)}[/tex]
A balanced chemical equation can be defined as a chemical equation wherein the number of atoms on the reactant (left) side is equal to the number of atoms on the product (right) side.
This ultimately implies that, both the charge on each atom and sum of the masses of the chemical compounds or elements in a chemical equation are properly balanced.
An ion can be defined as an atom or molecules (group of atoms) that has lost or gained one or more of its valence electrons, thereby, making it have a net positive or negative electrical charge.
First of all, we would write the dissociation equation for aqueous solutions of [tex]AgNO_3[/tex] and [tex]KI[/tex]:
For [tex]AgNO_3[/tex]:
[tex]AgNO_3_{(aq)}[/tex] -----> [tex]Ag^{+}_{(aq)} + NO_{3}^{-}_{(aq)}[/tex]
For [tex]KI[/tex]:
[tex]KI_{(aq)}[/tex] -----> [tex]K^{+}_{(aq)} + I^{-}_{(aq)}[/tex]
Next, we would write a chemical equation for the reaction of aqueous solutions of [tex]AgNO_3[/tex] and [tex]KI[/tex]:
[tex]AgNO_3_{(aq)} + KI_{(aq)}[/tex] -----> [tex]Ag^{+}_{(aq)} + NO_{3}^{-}_{(aq)}[/tex] [tex]+ \;K^{+}_{(aq)} + I^{-}_{(aq)}[/tex] ----->[tex]AgI_{(s)} + K^{+}_{(aq)} + NO_{3}^{-}_{(aq)}[/tex]
Note: Spectator ions refers to the ions that exist as a reactant and a product in a chemical equation because they are unchanged by the chemical reaction.
In this chemical reaction, the spectator ions are:
- [tex]K^+[/tex]
- [tex]NO_{3}^{-}[/tex]
Finally, in order to obtain the net ionic equation, we would cancel out the two (2) spectator ions:
[tex]Ag^{+}_{(aq)} + I^{-}_{(aq)}[/tex] -----> [tex]AgI_{(s)}[/tex]
Read more: https://brainly.com/question/13750908