Suppose that X is a random variable with mean 20 and standard deviation 5. Also suppose that Y is a random variable with mean 40 and standard deviation 10. Assume that the correlation between X and Y is 0.5. Find the mean and variance of the random variable Z = ????3X ???? 2Y . Be sure to show all your work.

Respuesta :

Answer:

a

 [tex]E(Z) =  202 [/tex]  

b

[tex]E(Z) = 198[/tex]

c

[tex]E(Z) = -140  [/tex]

Step-by-step explanation:

From the question we are told that

   The mean of X  is [tex] E(X)  =  20[/tex]

   The standard deviation of X is  [tex]s_1 = 5[/tex]

   The mean of Y  is [tex]\= y  =  40[/tex]

    The standard deviation of Y is  [tex]s_2 = 10[/tex]

Considering question a  

Generally the mean of   Z = 2 + 10X. is mathematically  represented

    [tex]E(Z) = E[2 + 10X ][/tex]

=> [tex]E(Z) =  2 +  10 E(X)[/tex]

=>  [tex]E(Z) =  2 +  10 * 20 [/tex]        

=>  [tex]E(Z) =  202 [/tex]          

Considering question b

Generally the mean of   Z = 10X - 2.. is mathematically  represented  

        [tex]E(Z) = E[10X -2 ][/tex]

   => [tex]E(Z) = 10E(X) - 2[/tex]

  =>  [tex]E(Z) = 10* 20  - 2[/tex]

  =>  [tex]E(Z) = 200  - 2[/tex]

 =>  [tex]E(Z) = 198[/tex]

Considering question c

Generally the mean of   -3X - 2Y is mathematically  represented

     [tex]E(Z) = E[-3X -2Y ][/tex]

     [tex]E(Z) = -3 E(X) -2E(Y) [/tex]

=>   [tex]E(Z) = -3 * 20 -2* 40 [/tex]

=> [tex]E(Z) = -140  [/tex]

Ver imagen okpalawalter8