You measure the period of a mass oscillating on a vertical spring ten times as follows:

Period (s): 1.06, 1.31, 1.28, 0.99, 1.48, 1.37, 0.98, 1.31, 1.59, 1.55

Required:
What are the mean and (sample) standard deviation?

a. Mean: 1.228, Standard Deviation: 0.2135
b. Mean: 1.325, Standard Deviation: 0.1674
c. Mean: 1.292. Standard Deviation: 0.2211
d. Mean: 1.228, Standard Deviation: 0.2098
e. Mean: 1.292, Standard Deviation: 0.2135

Respuesta :

Answer:

Step-by-step explanation:

Mean is the ratio of sum of the dataset to the sample size. Mathematically:

[tex]\overline x = \frac{\sum Xi}{N}[/tex]

Xi are the individual periods

N is the sample size

[tex]\sum Xi = 1.06+1.31+1.28+0.99+1.48+1.37+0.98+1.31+1.59+1.55\\\sum Xi = 12.92[/tex]

N = 10

Substitute

[tex]\overline x = \frac{12.92}{10}\\\overline x = 1.292[/tex]

hence the mean of the samples is 1.292

For the standard deviation:

[tex]\sigma = \sqrt{\frac{\sum (x-\overline x)^2}{N} } \\[/tex]

[tex]\sum (x-\overline x)^2 = (1.06-1.292)^2+ (1.31-1.292)^2+ (1.28-1.292)^2+ (10.99-1.292)^2+ (1.48-1.292)^2+ (1.37-1.292)^2+ (0.98-1.292)^2+ (1.31-1.292)^2+ (1.59-1.292)^2+ (1.55-1.292)^2\\\sum (x-\overline x)^2 = 0.43996[/tex]

Substitute into the formula:

[tex]\sigma = \sqrt{\frac{0.43996}{10} }} \\\sigma = \sqrt{{0.043996}}} \\\sigma = 0.2098[/tex]

Hence the standard deviation is 0.2098