Evaluate the function at the indicated values. (If an answer is undefined, enter UNDEFINED.)


f(x) = x2 + 7x


f(0) = 0


Correct: Your answer is correct.


f(3) = 30


Correct: Your answer is correct.


f(−3) = −12


Correct: Your answer is correct.


f(a) = a


Incorrect: Your answer is incorrect.


f(−x) =


f



1


a



=

Respuesta :

Answer:

a) The function is equal to 0 when [tex]x = 0[/tex].

b) The function is equal to 30 when [tex]x = 3[/tex].

c) The function is equal to -12 when [tex]x = -3[/tex].

d) The function is equal to [tex]a\cdot (a+7)[/tex] when [tex]x = a[/tex].

e) The function is equal to [tex]x\cdot (x-7)[/tex] when [tex]x = -x[/tex].

Step-by-step explanation:

To this respect we must keep in mind that this exercise consists in evaluating given function at different values. Let [tex]f(x) = x^{2}+7\cdot x[/tex] the function to be evaluated:

a) [tex]x = 0[/tex]

[tex]f(0) = 0^{2}+7\cdot (0)[/tex]

[tex]f(0) = 0[/tex]

The function is equal to 0 when [tex]x = 0[/tex].

b) [tex]x = 3[/tex]

[tex]f(3) = 3^{2}+7\cdot (3)[/tex]

[tex]f(3) = 30[/tex]

The function is equal to 30 when [tex]x = 3[/tex].

c) [tex]x = -3[/tex]

[tex]f(-3) = (-3)^{2}+7\cdot (-3)[/tex]

[tex]f(-3) = -12[/tex]

The function is equal to -12 when [tex]x = -3[/tex].

d) [tex]x = a[/tex]

[tex]f(a) = a^{2}+7\cdot a[/tex]

[tex]f(a) = a\cdot (a+7)[/tex]

The function is equal to [tex]a\cdot (a+7)[/tex] when [tex]x = a[/tex].

e) [tex]x = -x[/tex]

[tex]f(-x) = (-x)^{2}+7\cdot (-x)[/tex]

[tex]f(-x) = x^{2} -7\cdot x[/tex]

[tex]f(-x) = x\cdot (x-7)[/tex]

The function is equal to [tex]x\cdot (x-7)[/tex] when [tex]x = -x[/tex].