Answer:
The answer is "$ 52.17"
Explanation:
Third-year dividend, [tex]D_3 = \$ \ 2.00[/tex] Increasing at [tex]80 \ \%[/tex] per year in years 4 and 5.
[tex]\to D_4 = 2.00(1.80)=3.6\\\\\to D_5 = 3.6 (1.80) = 4.48\\\\[/tex]
Now, rising at a steady rate of 5 percent per year in year 6
[tex]\to D_6 = 6.48(1.05) =6.804[/tex]
[tex]\text{Price of the stock} = \frac{Expected \ dividend}{(Required \ return - growth \ rate)}[/tex]
[tex]=\frac{6.804}{(0.13 - 0.05)}\\\\ =\frac{6.804}{(0.08)}\\\\ = \$ \ 85.05[/tex]
The present value of all flows of cash:
[tex]= \frac{2.00}{(1.13)^3} + \frac{3.6}{(1.13)^4} + \frac{(4.48+ 85.05)}{(1.13)^5}\\\\ = \frac{2.00}{1.442897} + \frac{3.6}{1.63047361} + \frac{(4.48+ 85.05)}{1.84243518}\\\\ = \frac{2.00}{1.442897} + \frac{3.6}{1.63047361} + \frac{(89.53)}{1.84243518}\\\\= 1.38 +2.20+ 48.59\\\\=52.17[/tex]