Respuesta :
Distance = 13 units
Point A: (8, -7)
Point B: (-4, -2)
[tex]\sqrt{(8 + 4)^{2} + (-7 + 2)^{2} }[/tex]
[tex]\sqrt{(12)^{2} + (-5)^{2} }[/tex]
[tex]\sqrt{144 + 25 }[/tex]
[tex]\sqrt{169}[/tex]
[tex]13[/tex]
Answer:
[tex]\boxed {d = 13}[/tex]
Step-by-step explanation:
Use the Distance Formula to help you find the distance between the two following points:
[tex]d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}[/tex]
(where [tex](x_{1}, y_{1})[/tex] represents the first point and [tex](x_{2}, y_{2})[/tex] represents the second point)
-Apply the two following onto the formula:
[tex](x_{1}, y_{1}) = (8, -7)[/tex]
[tex](x_{2}, y_{2}) = (-4, -2)[/tex]
[tex]d = \sqrt{(-4 - 8)^{2} + (-2 + 7)^{2}}[/tex]
-Solve for the distance:
[tex]d = \sqrt{(-4 - 8)^{2} + (-2 + 7)^{2}}[/tex]
[tex]d = \sqrt{(-12)^{2} + 5^{2}}[/tex]
[tex]d = \sqrt{144 + 25}[/tex]
[tex]d = \sqrt{169}[/tex]
[tex]\boxed {d = 13}[/tex]
Therefore, the distance is [tex]13[/tex].