Answer:
see explanation
Step-by-step explanation:
Using the trigonometric identities
tanx = [tex]\frac{sinx}{cosx}[/tex] , sin²x + cos²x = 1, secx = [tex]\frac{1}{cosx}[/tex]
Consider left side
tanAsinA + cosA
= [tex]\frac{sinA}{cosA}[/tex] × sinA + cosA
= [tex]\frac{sin^2A}{cosA}[/tex] + cosA
[tex]\frac{sin^2A+cos^2A}{cosA}[/tex]
= [tex]\frac{1}{cosA}[/tex]
= secA = right side , thus proven