Answer:
A) m[tex]_{T}[/tex] = 0.3025 * 0.0476 * 92.13 = 1.327 Ibm
B) T= 63.32°F
Explanation:
Given data:
1000 gallon tank currently contains 100.0 gallons of liquid toluene
and A gas saturated with toluene vapor at 85°F and 1 atm
A) Calculate quantity of toluene ( Ibm ) that will enter the atmosphere when the tank is filled
m[tex]_{T}[/tex] = [tex]n_{gas} * Y_{T} * M_{T}[/tex]
[tex]n_{gas}[/tex] (total mole of gas) = 0.3025 Ib-mole ( calculated using : [tex]\frac{PV}{RT}[/tex] )
[tex]Y_{T}[/tex] (mole fraction of toluene) = 0.0476 ( calculated using [tex]\frac{P_{T} }{P}[/tex] )
M[tex]_{T}[/tex] = 92.13 Ibm/Ib-mole
therefore: m[tex]_{T}[/tex] = 0.3025 * 0.0476 * 92.13 = 1.327 Ibm
B) using Antoine equation to solve for T
Antoine equation : [tex]log_{10} (P_{T} ) = A - \frac{B}{T+C}[/tex]
PT( partial pressure ) = 18.95 ( calculated using : [tex]y_{tb} * P[/tex] )
A = 6.95805
B = 1346.773
T = ?
C = 219.693
to calculate T make T the subject the subject of the equation
T + 219.693 = 1346.773 / 5.68044
∴ T = 17.40°C
convert T to Fahrenheit
T = 1.8 * 17.40 +32
= 63.32°F